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Climate change and water supply in Climate change and water supply in 
western national parkswestern national parks
By Jessica Lundquist and James Roche

OVER THE PAST 50–60 YEARS, warming temperatures 
across the western United States have resulted in greater 
proportions of precipitation falling as rain rather than snow 

(Knowles et al. 2006) and in earlier snowmelt and streamfl ow (Mote 
et al. 2005; Stewart et al. 2005). The years 2004 and 2007 marked 
two of the earliest spring melts on record (Pagano et al. 2004), and 
2007 was one of the driest years on record in California. Glaciers are 
disappearing across the West, and Glacier National Park (Montana) 
may cease to live up to its name as early as 2030 (Myrna et al. 2003). 
Annual precipitation amounts in the western United States have not 
changed signifi cantly, and predictions of precipitation are uncertain 
(Dettinger 2005, 2006). However, even without changes in total 
precipitation amounts, warming temperatures and corresponding 
shifts from solid to liquid precipitation have profound implications 
for park water supplies and park management.
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Glaciers have provided a buff er against 

low fl ows in dry, warm summers, and 

their absence could result in perennial 

rivers becoming ephemeral streams. 

Streams that are already ephemeral, such 

as Yosemite Falls, will likely become drier 

on average earlier in summer.

Physical Sciences

Figure 1. Yosemite Falls, in Yosemite National Park, is fed by 
snowmelt, and typically goes dry by the end of summer. Earlier 
snowmelt because of warmer temperatures would lead to the falls 
drying earlier in the season.
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Temperature changes will have the greatest infl uence in mountain 
parks with a Mediterranean climate such as Yosemite (California), 
Sequoia and Kings Canyon (California), Lassen Volcanic (Califor-
nia), Crater Lake (Oregon), Mount Rainier (Washington), Olym-
pic (Washington), and North Cascades (Washington) national 
parks, where nearly all precipitation falls in winter, and where 
ecosystems and humans depend on snowmelt for water supplies 
throughout summer. Earlier snowmelt and a greater proportion 
of rain result in more water fl owing into rivers in winter when it is 
a hazard, and less into rivers in summer when it is a resource.

Too much water in winter: 
Warming and fl ood 
management
Warmer temperatures increase the elevation where falling snow 
melts and becomes rain, thus increasing the contributing area for 
a given storm and the likelihood of fl ooding (White et al. 2002; 
Lundquist et al. 2008). Mountain ranges lining the Pacifi c coast 
are most at risk from “atmospheric river” or “pineapple express” 
storms, when winds transfer a narrow jet of warm, moisture-rich 
air from near Hawaii to the U.S. West Coast (Ralph et al. 2004; 
Ralph et al. 2006; Neiman et al. 2008). This type of storm caused 
fl oods that closed Yosemite Valley in Yosemite National Park in 
January 1997 and May 2005, and fl oods that drastically damaged 
roads in Mount Rainier and North Cascades national parks in 
November 2006. Rivers with a large proportion of total con-
tributing area near the mean elevation of the winter 0°C (32°F) 
isotherm are most sensitive to increased fl ood risks because these 
areas will become unfrozen and contribute to fl ood runoff  as 
temperatures warm (Bales et al. 2006).

Too little water in summer: 
Warming and drought 
management
In addition to too much water in winter, too little water in sum-
mer is a danger. Warmer temperatures will subject park water 
supplies to less reliable late summer streamfl ow. Not only will 
snow melt earlier (Stewart et al. 2005), but glacial meltwater will 
soon disappear in many western national parks (Myrna et al. 
2003). Historically, glaciers have provided a buff er against low 
fl ows in dry, warm summers, and their absence could result in 
perennial rivers becoming ephemeral streams. Streams that are 
already ephemeral, such as Yosemite Falls, will likely become drier 
on average earlier in summer (fi g. 1, previous page).

These shifts in water timing will probably have large impacts on 
regional ecosystems (Stephenson et al. 2006), resulting in rapid, 
threshold-type responses (Burkett et al. 2005). For example, 
earlier drying of ephemeral streams will lead to lower water 
tables in meadows. Once groundwater level drops below a critical 
depth, vegetation will change from mesic (wet meadow) to xeric 
(dryland) (Loheide and Gorelick 2007).

Park water supplies that depend on snow- or glacier-fed surface 
runoff —for example, in Tuolumne Meadows and on the South 
Fork of the Merced River near Wawona in Yosemite National 
Park (fi g. 2)—will need management plans that consider the 
increased likelihood of late summer water shortages. Few sources 
other than surface water are available, given the lack of deep al-
luvial basins in many developed areas such as Wawona. This lack 
makes groundwater extraction for public water supplies infea-
sible (Borchers 1996). Management of these systems will require 
careful stream gauging and discharge monitoring to accurately 
quantify low fl ows and implement water rationing or other man-
agement actions.

Park management strategies
Regardless of world action plans to mitigate climate change, 
temperatures are likely to continue rising for the foreseeable 
future (Intergovernmental Panel on Climate Change 2007). Park 
management can best adapt to climate change by understanding 
which areas are likely to be most aff ected by warming tempera-
tures and why. For example, Lundquist and Flint (2006) dem-

Figure 2. Run-of-the-river water supplies, as pictured here on the 
South Fork of the Merced River near Wawona in Yosemite National 
Park, are particularly vulnerable to earlier melting of snowpack.
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onstrated that at midlatitudes, such as in the Sierra Nevada and 
Colorado Rockies, high-elevation, north-facing basins are much 
less sensitive to warming temperatures than their south-facing 
counterparts. Melt onset is delayed longer in the shadiest basins 
in years with early melt onset than in years with average melt tim-
ing, resulting in nonlinear diff erences between subbasins that are 
not captured by standard modeling techniques (Lundquist and 
Flint 2006). Also, temperatures in diff erent locations in complex 
terrain respond diff erently to variations in atmospheric circula-
tion. For example, because of decadal weakening of westerly 
winds over central California, the eastern slope of the Sierra 
Nevada has been warming signifi cantly less than the western 
slope (Lundquist and Cayan 2007). Managers can take advantage 
of spatial patterns to determine which park areas would benefi t 
most from restoration or enhanced protection.

As snowmelt becomes a less reliable source of water in late sum-
mer, summer precipitation will become increasingly important 
in controlling late summer soil moisture and minimum fl ows in 
mountain streams. Hamlet et al. (2007a, b) found that modeled 
late-season soil moisture depends more on summer precipitation 
than on temperature or the spring snowpack. These studies also 
found that in many areas of the western United States, summer 
precipitation has been increasing in recent decades. For example, 
one large thunderstorm in late summer 2007 was suffi  cient to keep 
water levels in Wawona from falling below critical rationing levels. 
Thus, further monitoring and research should be devoted to under-
standing and predicting summer precipitation, which most often 
falls as spatially variable thunderstorms at high elevations (fi g. 3).

Conclusions
Adapting to climate change will require careful, spatially distrib-
uted monitoring to understand how diff erent areas will respond. 
Parks managers will need to be prepared for the increasing 
likelihood of both fl oods and drought; this will require fl exible 
management plans that can adapt as baselines change and new 
information is gleaned.
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